3.4.3 中点公式和距离公式

【学情分析】

学生在本章前几节学习了平面向量的线性运算、平面向量的内积、平面向量的直角坐标,因此可以综合应用所学知识构建本节课的新知识:应用平面向量的线性运算及平面向量的直角坐标推导出线段中点坐标公式;应用平面向量的内积及平面向量的直角坐标推导出两点间的距离公式.学生具备一定的直观想象、、逻辑推理、数学抽象的素养,但由于平面向量是学生以前没有接触过的新知识,因此学生对平面向量的相关概念、性质、运算等的接受和熟悉需要一定的过程.教学时,需注意低起点、慢慢来、多示范、多练习.

【教学目标】

- (1) 掌握中点公式和距离公式,并学会应用公式进行计算,解决问题.
- (2)通过中点公式和距离公式的推导和应用,提升数学运算、直观想象、逻辑推理、数学抽象等学科核心素养.
- (3)体验应用向量坐标将几何问题转换为代数问题的思维过程,感受数形结合的思想方法.

【教学重点和难点】

本节课的教学重点是中点公式和距离公式的推导及应用,教学难点是推导中点公式和距离公式.

【教学过程】

教学环节	教学内容	设计意图
复习	提问,引导学生思考回答.	通过提问启
	1. 向量 a 与向量 b 的内积定义为:	发学生思考,
	<i>a</i> • <i>b</i> =;	回顾平面向量
	2. 根据内积定义可得:	的内积、直角
	(1) a · a= ;	坐标及其运
	(2) $ a =$	算,为新课做
		准备.
	3. 若点 A 的坐标为 (x, y) , O 为坐标原点,则向量 \overrightarrow{OA} 的坐	

	标为	
	4. 如果向量 $a=(x_1, y_1)$, 向量 $b=(x_2, y_2)$, 用坐标表示下列	
	向量计算结果:	
	(1) a+b= ;	
	(2) $a-b=$;	
	$(3) \lambda a = \underline{\hspace{1cm}};$	
	(4) a · b =	
	已知点 $A(x_1,y_1)$ 和点 $B(x_2,y_2)$, 如何求线段 AB 的中点坐	提出问题,
	 标?	启发学生思
		考.
	解:如图所示,设线段 AB 的中点为 $M(x,y)$,则	
	$\overrightarrow{OM} = (x, y).$	展示应用已
	$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM}$ $y \uparrow$ B	学知识解决问
	$= \overrightarrow{OA} + \overrightarrow{AM}$ $= \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$	题的步骤.
	$=OA + \frac{1}{2}(OB - OA)$	
	$=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB}).$	
新课	故有	
AYI EK	$(x,y) = \frac{1}{2}[(x_1,y_1) + (x_2,y_2)] = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}),$	
	即	
	$x = \frac{x_1 + x_2}{2}, y = \frac{y_1 + y_2}{2}$.	
	2 2	
	·帆地 - 沿 - 4(
	一般地,设 $A(x_1, y_1)$, $B(x_2, y_2)$ 为平面内任意两点,则线	31 E W. A. de
	段 AB 的中点 $M(x,y)$ 的坐标为	引导学生归
	$x_1 + x_2$ $y_1 + y_2$	纳总结,得到
	$x = \frac{x_1 + x_2}{2}, y = \frac{y_1 + y_2}{2}$.	新知.
	这就是线段中点坐标的计算公式,简称 中点公式 .	

若点 A (1, 3), B (5, -7), 则线段 AB 的中点坐标是	及时巩固新
什么?	知,加深理解
11 4.	和记忆.
例 1 求点 A (2, 7) 关于点 M (5, -2) 的对称点 A '的坐	
标.	
解: 设点 A' 的坐标是 (x, y) , 由中点公式知	通过例题,强
$\frac{2+x}{2} = 5, \frac{7+y}{2} = -2$,	化学生对中点
2 2	公式的应用.
解得 $x = 8$, $y = -11$.	
所以点 A' 的坐标是(8, -11).	
已知向量 $a=(x, y)$,向量长度 $ a $ 可以用坐标表示吗?	提出问题,
	启发学生思
	考.
解 : 因为 $ a ^2 = a \cdot a = x^2 + y^2$,所以 $ a = \sqrt{x^2 + y^2}$.	引导学生应
	用向量内积及
	向量直角坐标
	的计算公式进
	行问题探究.
	引导学生归
已知向量 $a=(x,y)$,则向量长度为 $ a =\sqrt{x^2+y^2}$.	纳总结,得到
这就是向量长度的计算公式.	新知.
若平面内两点 $A(x_1,y_1)$, $B(x_2,y_2)$, 则 A , B 两点间的距	提出问题,
离可以用坐标表示吗?	启发学生思
	考.
解 :由题可知, $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$,利用向量长度计算	, ·
公式可得	引导学生应
	 用新知进一步
$ \overrightarrow{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.	探究.

若平面内两点 $A(x_1, y_1)$, $B(x_2, y_2)$, 则 A , B 两点间的距	引导学生归
离为 $ \overrightarrow{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.	纳总结,得到
这就是平面内两点间的距离公式.	新知.
例2 已知向量 $a=(4, -3)$, $b=(-6, 8)$, 求:	
(1) $ a + b $; (2) $ a + b $.	通过例题,
解: (1)	进一步巩固学
$ a + b = \sqrt{4^2 + (-3)^2} + \sqrt{(-6)^2 + 8^2} = 5 + 10 = 15.$	生对向量长度
	计算公式的理
(2) 因为 $a+b=(4, -3)+(-6, 8)=(-2, 5)$,	解和记忆.
所以 $a+b$ = $\sqrt{(-2)^2 + 5^2} = \sqrt{29}$.	
例3 已知点 A (1, 2), B (2, 3), C (2, 1), 求	
\triangle <i>ABC</i> 的中线 <i>AD</i> 的长度.	通过例题,
解 : 设点 $D(x,y)$, 则 $x = \frac{2+2}{2} = 2$, $y = \frac{1+3}{2} = 2$,	进一步巩固学
因此点 D 的坐标为(2,2).	生对中点公式
由平面内两点间的距离公式,得	和距离公式的
$ \overrightarrow{AD} = \sqrt{(2-1)^2 + (2-2)^2} = 1,$	理解和记忆.
故中线 AD 的长度为 1.	
例 4 设向量 a = (3,-1), b = (1,-2), 求〈 a,b 〉.	
解: 因为 $a \cdot b = 3 \times 1 + (-1) \times (-2) = 5$,	通过例题,
$ a = \sqrt{3^2 + (-1)^2} = \sqrt{10}$,	进一步帮助学
$ \mathbf{b} = \sqrt{1^2 + (-2)^2} = \sqrt{5}$,	生掌握向量长
	度计算公式的
所以 $\cos \langle a,b \rangle = \frac{a \cdot b}{ a b } = \frac{5}{\sqrt{10} \times \sqrt{5}} = \frac{\sqrt{2}}{2}$	应用.
又因为 $0 \leqslant \langle a,b \rangle \leqslant \pi$,所以 $\langle a,b \rangle = \frac{\pi}{4}$.	

	1. 已知 A , B 两点的坐标, 求线段 AB 的中点坐标:	
	(1) A (7, -2) , B (-1, 3) ;	
	(2) A (0, -4) , B (5, 0) ;	
	(3) A (-2, 0) , B (5, 0) ;	帮助学生及
	(4) A (-1, 5) , B (-11, 9) .	时巩固新知,
	2. 求点 A (-2 , 3) 关于点 M (1 , 1) 的对称点 A '的坐标.	根据学生掌握
	3. 已知向量 $a=(-2, -1)$, $b=(2, -4)$, 求 $ a - b $,	情况查漏补
	a-b .	缺.
	4. 求下列各组 A, B 两点之间的距离:	
	(1) A (2, 6) , B (1, 3) ;	
	(2) A (6, 1) , B (-6, -4) ;	
	(3) A (-7, 8) , B (1, -7) .	
	(4) A (1, -2) , B (5, 2) .	
	引导学生小结.	
	本节课学习了哪些公式?	引导学生回
小结	1. 线段中点坐标的计算公式.	顾、总结本节
	2. 向量长度的计算公式.	课的收获.
	3. 平面内两点间的距离公式.	
	1 分布水小,为社签 0/ 市 习题签 1 2 题	及时复习巩
作业	1. 书面作业: 教材第 96 页,习题第 1, 2 题.	固所学知识,
	2. 查漏补缺:根据个人情况进行复习与回顾.	继续探究延
	3. 拓展作业: 阅读教材"阅读材料".	伸.