3.4.1 平面向量的直角坐标及其运算

【学情分析】

学生学习了平面向量的基础知识,向量加法、减法、数乘的几何运算、共线定理,具备了学习向量的坐标的基础.从能力来看,学生具备一定的观察问题、分析问题的能力,也具备从简单的物理及生活背景中抽象出数学问题的能力.平面向量的坐标运算为用"数"的运算处理"形"的问题搭建了桥梁.学生在探究向量的运算时,可以运用数形结合、数学类比的思想方法,对知识进行理解和迁移.

【教学目标】

- (1) 理解平面向量的坐标表示,掌握平面向量的坐标运算.
- (2)通过学习,帮助学生进一步理解数形结合、数学类比的思想方法,体会事物之间的联系,培养学生的辩证思维能力.

【教学重点和难点】

本节课的教学重点是平面向量的坐标表示和坐标运算,教学难点是理解平面向量的坐标表示.

【教学过程】

教学环节	教学内容	设计意图
导入	1. 平面内建立了直角坐标系, 点 A 可以怎么表示?	教师提出问题,学生回忆,为知识的迁移做准备.
	2. 平面向量是否也有类似的表示? 3. 在下图所示的在平面直角坐标系中,分别取与 x 轴和 y 轴的正方向同向的两个单位向量 i , j ,已知点 $A(3,2)$,向量 \overrightarrow{OA} 如何用向量 i , j 来表示?	

-+					
- +	1			2.j	
-	j	_	31		-
		i	1	В	

1. 平面向量的直角坐标

一般地,对于平面直角坐标系 xOy 中的任意一个向量 a,如图所示,作 $\overrightarrow{OA} = a$,若点 A 的坐标为 (x, y),则 a = xi + yj,我们把 (x, y) 称为向量 a 在平面直角坐标系 xOy 中的坐标,记作 a = (x, y).

A(x,y) y A(x,y) y A(x,y) A(

新课

问题: (1) 向量的坐标与有序实数对之间是什么关系?

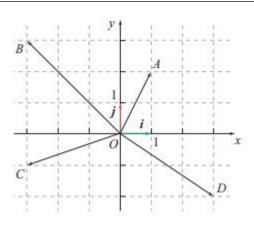
(2) 零向量和单位向量i,j的坐标分别是什么?

2. 相等向量的充要条件

如果 $\mathbf{a} = (x_1, y_1)$, $\mathbf{b} = (x_2, y_2)$, 那么 $\mathbf{a} = \mathbf{b} \Leftrightarrow x_1 = x_2 \perp y_1 = y_2.$

例 1 如图所示,在平面直角坐标系 xOy 中,用单位向量 i,j 分别表示向量 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} ,并求出它们的坐标.

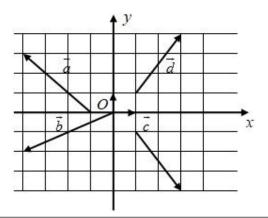
通过例题,加深学生对向量坐标的认识,进一步理解数形结合的思想方法.



解法略。

课堂练习

- 1. 在平面直角坐标系 xOy 中,i, j 分别为 x 轴和 y 轴正方向的单位向量. 如果 a=-2i+3j, b=-3i-j, 则向量 a 与向量 b 的坐标分别为 a=(,), b=(,).
- 2. 如下图所示,在平面直角坐标系 xOy 中,i,j 分别为 x 轴和 y 轴正方向的单位向量,写出图中四个向量的坐标.



通过练习, 进一步巩固学 生对向量的坐 标的认识.

3. 平面向量的坐标运算

问题:设 $a=(x_1, y_1)$, $b=(x_2, y_2)$, λ 为实数,试用坐标表示 a+b, a-b, λa , $a\cdot b$.

4. 始点不在原点的平面向量的坐标

问题: 设 $A = (x_1, y_1)$, $B = (x_2, y_2)$, 如何用坐标表示

学生在理解 的基础上,推 导坐标运算公 式.

 \overrightarrow{AB} ?

例2 已知 a=(4, -3) , b(-6, 8) , 求:

(1) **a+b**; (2) **a-b**; (3) 2**a**-3**b**; (4) **a**⋅ (2**a-b**). 解法略。

例 3 已知平行四边形 ABCD 的三个顶点的坐标分别是 A(5, -2), B(0, 2), C(-1, 7), 求点 D 的坐标. 解法略。

学生对解化分面技语图,没有证明,实,步点,是一的能生形分子。 人名英格里 人名英格里人

课堂练习

A 组题

- a-b=_____.
- a-b=_____.
 - 3. 若 A(3,5), B(6,9), 则 \overrightarrow{AB} =______, \overrightarrow{BA} =_____.

 - 5. 已知作用在坐标原点的三个力 f_1 (3, 4), f_2 = (2,
- -5), $f_3 = (3, 1)$, $\Re f_1 + f_2 + f_3$.

引导学生运 用数形结合的 思想方法,加 深学生对向量 坐标的运算的 理解.

B组题

- 1. 已知 a = AB, 完成下列填空:
- (1) $\exists a = (a, b)$, A(2, 1), B(3, -2), $\emptyset a = -1$,

b=

	(2) $\ddot{a} = (-3, 2), A(1, -1), B(x, y), y = \underline{\hspace{1cm}},$	
	<i>y</i> =;	
	2. 己知 $a=(4,-\frac{3}{4}), b=(-2,\frac{3}{2}), 则 2a+3b=$	
	$\overrightarrow{AB} = 2\mathbf{a} + 3\mathbf{b}$,且点 A 的坐标为(-1 , 1),则点 B 坐标	
	为	
	3. 已知平行四边形 $ABCD$ 的三个顶点坐标分别为 A $(-2,$	
	1), B(-1, 3), C(3, 4), 求顶点 D的坐标.	
小结	引导学生小结.	
	1. 平面向量的直角坐标.	
	2. 平面向量的直角坐标运算.	针对学生薄
	(1)两个向量和与差的坐标分别等于这两个向量相应坐标	弱环节或易错
	的和与差.	处进行强调和
	(2) 一个向量的坐标等于向量终点的坐标减去始点的相应	小结.
	坐标.	
	3. 始点不在原点的平面向量的坐标.	