3.2.3 数乘向量

【学情分析】

学生在学习本节内容之前,已熟知向量的概念,掌握了向量的加、减法的三角形法则, 具备了一定的认图和作图能力. 本节内容是向量的加、减法的特殊情况,即当两个向量方向 相同或相反时,不能用三角形法则求和向量及差向量,故而引入本节内容.

【教学目标】

- (1) 通过实例掌握数乘向量的运算及运算律,并理解其几何意义.
- (2) 理解并掌握共线向量基本定理.
- (3)通过教学,帮助学生养成规范作图的习惯,培养学生运用数形结合的思想方法解决问题的能力.

【教学重点和难点】

本节课的教学重点是数乘向量的定义及其运算,教学难点是共线向量基本定理.

【教学过程】

教学环节	教学内容	设计意图
	【问题情境】 已知非零向量 a, 求作:	在向量加法
	(1) a + a + a;	的基础上引入
	(2)(-a)+(-a)+(-a).	数乘向量的定
	解:作图如下.	义,符合学生
导入	a	认知规律,有
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	利于学生对概
	(1) (2)	念的同化,能
	通过作图,我们可以看到,	培养学生运用
	$a+a+a=\overrightarrow{OC}$,	数形结合的思
	$(-a)+(-a)+(-a)=\overrightarrow{DG}$.	想方法解决问
	对于向量 a ,我们把 $a+a+a$ 记作 $3a$,把 $(-a)+(-a)+$	题的能力.
	(<i>-a</i>)记作 <i>-3a</i> .	

观察图片,3a 与-3a 是否还是一个向量? 它的长度与方向有何变化?

观察发现: 3a 的长度等于 $3 \mid a \mid$,方向与 a 的方向相同;

-3a 的长度同样等于 $3 \mid a \mid$,方向与 a 的方向相反.

作图并思考: 已知 \overrightarrow{AB} ,把线段 \overrightarrow{AB} 三等分,分点为 \overrightarrow{P} 0, \overrightarrow{Q} 0, 则 \overrightarrow{AP} 1, \overrightarrow{AO} 2, \overrightarrow{BP} 与 \overrightarrow{AB} 0)关系如何?

1. 数乘向量的定义

一般地,给定一个实数 λ 和任意一个向量 a,规定它们的乘积是一个向量,记作 λa .

向量 λa 的长度与方向规定为:

- $(1) |\lambda \mathbf{a}| = |\lambda| |\mathbf{a}|;$
- (2) 当 λ >0 时, λa 与 a 的方向相同;当 λ < 0 时, λa 与 a 的方向相反.

上述实数 λ 与向量 a 相乘的运算简称**数乘向量**. 显然,0a=0, $\lambda 0=0$.

2. 数乘向量的几何意义

数乘向量的几何意义就是把向量沿着它的方向或反方向放大或缩小. 如 2a 的几何意义就是沿着向量 a 的方向,长度放大为原来的 2 倍.

练习1

任作向量 a,作出向量-3a, $\frac{1}{2}a$, $-\frac{1}{3}a$,并说出它们的几何意义.

3. 数乘向量线性运算及其运算律

设 λ , $\mu \in \mathbb{R}$, 可以验证, 数乘向量运算满足下列运算律:

- (1) $(\lambda + \mu)a = \lambda a + \mu a$;
- (2) $\lambda(\mu a) = (\lambda \mu)a$;
- (3) $\lambda(a+b) = \lambda a + \lambda b$.

紧扣向量的 两要素分析定 义,便于学生 理解数乘向量 的几何意义.

采用类比学习的方式.有实数运算法则的基础,学生解决这部分题目比较容易.教师要提醒学生

新课

向量的加法、减法、数乘向量以及它们的混合运算,统称向

时,应写作 \vec{a} .

请观察, 数乘向量的运算律与实数乘法运算律有什么相似之 处.

例 1 计算:

量的线性运算.

(1)
$$(-2) \times 3a$$
;

(2)
$$2(a+b)-3(a-b)$$
;

(3)
$$(\lambda + \mu)(\mathbf{a} - \mathbf{b}) - (\lambda - \mu)(\mathbf{a} + \mathbf{b})$$
.

解法略。

练习2

化简: (1)
$$2(a-b)+3(a+b)$$

化简: (1)
$$2(a-b)+3(a+b)$$
; (2) $\frac{1}{2}(a+b)+\frac{1}{2}(a-b)$.

例2 设x是未知向量,解方程5 (x+a)+3 (x-b)=0.

解法略。

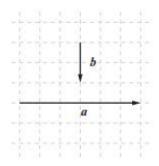
练习3

解关于x的方程:

$$(1) \ 3(a+x)=x;$$

(1)
$$3(a+x)=x$$
; (2) $x+2(a+x)=0$.

例3 如图所示,已知向量a, b, 作出向量 $\frac{1}{2}a$ -3b.



解法略。

4. 共线向量基本定理

可以看出,向量 λa 与向量 a 共线. 反之,若有一个向量 b与向量 $a(a\neq 0)$ 共线,则向量 b 与 a 的关系如下:

当
$$b=0$$
 时, $b=0a$;

当
$$b$$
 与 a 方向相同时,记 $\lambda = \frac{|b|}{|a|}$,则有 $b = \lambda a$;

当
$$b$$
 与 a 方向相反时,记 $\lambda = -\frac{|b|}{|a|}$,则有 $b = \lambda a$.

由例3引出 向量共线的定 理, 由特殊到 一般, 便于学 生接受.

	共线向量基本定理:	本题可帮助
	向量 $a(a\neq 0)$ 与 b 共线 \Leftrightarrow 存在唯一一个实数 λ ,使 $b=\lambda a$.	学生学会用共
	例 4 已知 e , e_1 , e_2 为非零向量,判断下列各题中向量 a , b	线向量基本定
	是否平行:	理判断两个向
	$(1)\boldsymbol{a} = 2\boldsymbol{e}, \boldsymbol{b} = 4\boldsymbol{e};$	量是否平行.
	$(2)a = 2e_1 + 4e_2, b = e_1 + 2e_2.$	
	解法略。	本题用向量
		知识解决平面
		几何问题,对
	例 5 如图所示,已知点 E , F 分别是 $\triangle ABC$ 的边 AB , AC 的	学生来说有些
	中点,求证: $\overrightarrow{BC}/\!/\overrightarrow{EF}$.	难度. 教师要
	A	结合向量的运
		算法则详细讲
	E F C	解.
	解法略。	
	练习 4	
	在 $\triangle ABC$ 中,已知点 D 是线段 BC 的中点, 求证:	
	$\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).$	
小结	引导学生小结.	针对学生薄
	1. 数乘向量的定义及其几何意义.	弱环节或易错
	2. 数乘向量的运算律.	处进行强调和
	3. 共线向量基本定理.	小结.
作业	教材第82页, 习题第3题.	巩固所学内容.