3.2.2 向量的减法

【学情分析】

学生通过前一节课向量加法的运算及其几何意义的学习,掌握了向量加法的三角形法则. 学生也知道在实数的运算中,减法是加法的逆运算. 本节课将类比实数的减法运算来定义向量的减法运算. 学生在运用向量加法与减法的三角形法则的过程中,可能会混淆不清,教师需要提供足够的作图和化简的综合练习让学生得到充分训练.

【教学目标】

- (1) 理解向量的减法及其几何意义,能按要求作出两个向量的差向量.
- (2) 能正确区分并运用向量加法与减法的三角形法则.
- (3)逐步提升数学运算、直观想象、数学抽象等学科核心素养.

【教学重点和难点】

本节课的教学重点是向量减法运算及其几何意义,教学难点是区分并运用向量加法与减 法的三角形法则.

【教学过程】

教学环节	教学内容	设计意图
导入	【 问题情境 】在实数的运算中,我们知道减法是加法的逆运	
	算.如何类比实数的减法运算来定义向量的减法运算呢?	
	已知向量 a , b , 作 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 如图所示.	从复习向量
		加法的三角形
		法则引入,类
		比实数减法,
		结合作图,让
	则由向量加法的三角形法则,得 $b+\overrightarrow{BA}=a$.	学生直观感
		受,易于理解.
	我们把向量 \overrightarrow{BA} 称为向量 a 与 b 的差,记作 a - b ,即	
	$\overrightarrow{BA} = a - b = \overrightarrow{OA} - \overrightarrow{OB}.$	

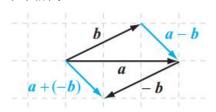
【探索新知】

由此可见,如果把两个向量的始点放在一起,则这两个向量 的差就是从减向量的终点指向被减向量的终点的向量. 这种求 两个向量差的运算,称为**向量的减法**.

与向量 a 等长且方向相反的向量称为 a 的**相反向量**,记作一a.

想一想"相反向量就是方向相反的向量", 这种说法对吗?

零向量的相反向量是它本身.


显然,一个向量与其相反向量的和向量是零向量,即 a+(-a)=0.

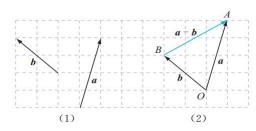
因为在 $\mathbf{b} + \overrightarrow{BA} = \mathbf{a}$ 的两边同时加上($-\mathbf{b}$),得

$$b + \overrightarrow{BA} - b = a + (-b)$$
,

所以 a-b=a+(-b).

这说明,在向量的减法中,减去一个向量等于加上这个向量的相反向量,如图所示.

引导学生观察图形,得出向量减法的几何意义.


新课

【例题讲解】

例1 如图 (1) 所示,已知向量 a, b,作出向量 a-b.

解: 在平面内任取一点 O, 作 OA = a, OB = b, 作向量 BA,

如图 (2) 所示,则 $a-b=\overrightarrow{OA}-\overrightarrow{OB}=\overrightarrow{BA}$.

想一想 根据例 1 的条件,你能作出 b-a 吗? 它与 a-b 的 关系是什么?

例 2 如图所示,已知平行四边形 ABCD, $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$,

帮助学生进一步体会向量减法的几何意义.

帮助学生区

分向量加法与 试用向量 a 和 b 分别表示向量 \overrightarrow{AC} 和 \overrightarrow{DB} . 向量减法的几 何意义. **解**:连接AC,DB,由向量求和的平行四边形法则,有 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = a + b$: 由向量减法的定义,得 $\overrightarrow{DB} = \overrightarrow{AB} - \overrightarrow{AD} = a - b.$ 【练习】 1. 口答: (1) $\overrightarrow{AB} - \overrightarrow{AD}$; (2) $\overrightarrow{BA} - \overrightarrow{BC}$; 通过练习, (3) $\overrightarrow{OA} - \overrightarrow{OB}$; (4) $\overrightarrow{DO} - \overrightarrow{AO}$. 及时检查学生 2. 已知向量 a, b, 作出向量 a-b: 对本节内容的 掌握情况. (1)(2)引导学生小结. 培养学生归纳 小结 (1) 向量减法的几何意义. 总结的能力. (2) 怎样区分向量加法与向量减法的几何意义? 巩固并运用 教材第78页,练习第3题. 作业 所学知识.