1.2 倍角公式 (第2课时)

【学情分析】

学生在前面初步学习了二倍角的正弦、余弦及正切公式,但是掌握得不够熟练,对公式的理解不够透彻,本节课作为能力提升课对同学们提出了更高要求.

【教学目标】

- (1) 熟练掌握二倍角的正弦、余弦、正切公式.
- (2) 熟练应用二倍角的正弦、余弦、正切公式进行三角函数式的求值、化简、证明.
- (3) 增强学生"数学有用"以及"用数学"的意识.

【教学重点和难点】

本节课的教学重点是应用二倍角的正弦、余弦、正切公式进行三角函数式的求值、化简、证明,教学难点是倍角公式在三角函数的求值、化简和证明中的逆用.

【教学过程】

教学环节 数学内容 设	设计意图
信角公式: $\sin 2\alpha = 2\sin \alpha \cos \alpha ,$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ 生 $= 2\cos^2 \alpha - 1$ = $1 - 2\sin^2 \alpha ,$ 型 $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} .$ 型 $\frac{1}{2}$ 1	

		T
新课	$\sqrt{3}$ 1	进一步
	练习1. 已知 $\sin 2\alpha = -\frac{\sqrt{3}}{2}$, $\cos 2\alpha = -\frac{1}{2}$, $\tan 2\alpha = \sqrt{3}$,	熟悉倍角
	$ \vec{x} \sin 4\alpha, \cos 4\alpha, \tan 4\alpha. $	公式的求
	解: $\sin 4\alpha = 2\sin 2\alpha\cos 2\alpha = \frac{\sqrt{3}}{2}$;	值、化简,
	$\cos 4\alpha = \cos^2 2\alpha - \sin^2 2\alpha = -\frac{1}{2};$	提高学生
	$\tan 4\alpha = \frac{2\tan 2\alpha}{1-\tan^2 2\alpha} = -\sqrt{3}.$	的运算能
	$1-\tan^2 2\alpha$	力.
	例2 证明恒等式:	了解倍
	$\frac{\sin 2\theta + \sin \theta}{2\cos 2\theta + 2\sin^2 \theta + \cos \theta} = \tan \theta.$	角公式的
	$2\cos 2\theta + 2\sin^2\theta + \cos\theta$	逆用,巩固
	证明: 左边= $\frac{2\sin\theta\cos\theta+\sin\theta}{2(\cos^2\theta-\sin^2\theta)+2\sin^2\theta+\cos\theta}$	所学知识,
	$2(\cos^2\theta - \sin^2\theta) + 2\sin^2\theta + \cos\theta$	学以致用,
		让学生体
	$= \frac{\sin \theta (2 \cos \theta + 1)}{\cos \theta (2 \cos \theta + 1)} = \tan \theta = \pi \text{ id }.$	会到"数
	练习	学有用",
	1. 化简:	增强学生
	(1) $(\sin \alpha - \cos \alpha)^2$; (2) $\sin \frac{\theta}{2} \cos \frac{\theta}{2}$.	" 用 数
		学"的意
	2. 证明: $\frac{\sin 2\theta - \sin \theta}{1 + \cos 2\theta - \cos \theta} = \tan \theta.$	识.
小结	引导学生小结.	
	1. 倍角公式:	回顾本
	$\sin 2\alpha = 2\sin \alpha \cos \alpha ,$	节课的内
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	容,让学生
	$=2\cos^2\alpha-1$	体会数学
	$=1-2\sin^2\alpha$	学习中万
	$\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	变不离其
	$1 - \tan^2 \alpha$	宗的魅力.
	2. 倍角公式在三角函数的求值、化简和证明中的逆用.	