1.4.1 余弦定理(第2课时)

【学情分析】

学生已经了解了余弦定理的推导及利用公式解三角形的两种情形,能够利用公式初步解决简单的数学问题,但对前后知识的联系、理解、应用仍较为欠缺.教学时,需注意循序渐进,慢慢来、多示范、多练习,逐步提升学生的应用能力.

【教学目标】

- (1)通过实例,理解用余弦定理解三角形的唯一性,并应用余弦定理进行一些简单的分析和判断;
 - (2) 通过由浅入深的练习,增强学生的数学应用意识;
 - (3) 通过解决问题,培养学生独立思考、交流合作的品质.

【教学重点和难点】

本节课的教学重点是余弦定理的应用,教学难点是对余弦定理的推导和理解.

【教学过程】

教学环节	教学内容	设计意图
复习	 写出余弦定理在解三角形中应用的两种情形(求边、求角),并说说你是怎样把握公式的特征去进行记忆的. 应用余弦定理可解怎样的斜三角形? 	回忆余弦
		定理的内容,
		启发学生思
		考如何利用
		公式解斜三
		角形.
	【例 3】	通过练习,
新课	在 $\triangle ABC$ 中,已知 $a=6$, $b=4$, $c=2\sqrt{7}$,试判断这个三角形的形状.	使学生发现
		用余弦定理
		解三角形时,
	解:因为 $6>2\sqrt{7}>4$,即 $a>c>b$,所以 $\angle A$ 是 $\triangle ABC$	解是唯一的.
	中最大的内角. 由余弦定理, 得	

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{4^2 + (2\sqrt{7})^2 - 6^2}{2 \times 4 \times 2\sqrt{7}}$$

$$= \frac{\sqrt{7}}{14} > 0.$$

因为 $0<\angle A<\pi$, 所以 $\angle A$ 为锐角.

因此, $\triangle ABC$ 为锐角三角形.

练习3 判断△ABC 是锐角三角形、直角三角形还是钝角三角形:

(1)
$$a = 2\sqrt{3}$$
, $b = 2\sqrt{2}$, $c = \sqrt{6} + \sqrt{2}$;

(2)
$$a=5$$
, $b=12$, $c=13$;

(3)
$$a=2$$
, $b=\sqrt{2}$, $c=\sqrt{3}+1$.

【例4】

已知在 $\triangle ABC$ 中, $\angle B=60^{\circ}$,证明: $b^2-c^2=a(a-c)$.

分析: 要证明 $b^2 - c^2 = a(a-c)$, 只需证明

$$b^2 = a^2 + c^2 - ac.$$

证明: 由余弦定理,得

$$b^2 = a^2 + c^2 - 2ac \cos B$$

= $a^2 + c^2 - 2ac \cos 60^\circ$
= $a^2 + c^2 - ac$,

所以
$$b^2-c^2=a(a-c)$$
.

练习 4 已知在△ABC中, ∠A=120°, 求证:

(1)
$$a^2-b^2 = c(b+c)$$
:

(2)
$$b(a^2-b^2) = c(a^2-c^2)$$
.

引导学生小结.

1. 余弦定理:

小结

 $a^{2}=b^{2}+c^{2}-2bc\cos A$, $b^{2}=a^{2}+c^{2}-2ac\cos B$, $c^{2}=a^{2}+b^{2}-2ab\cos C$.

- 2. 余弦定理可以解决的问题:
- (1) 已知三角形的两边及其夹角,求第三边;
- (2) 已知三角形的三边求内角.
- (3) 判断三角形形状.

回顾学习的过程,总结本节课的收获.