1.5 三角计算的应用

【学情分析】

学生在前面的章节学习了和角公式、倍角公式、正弦型函数、余弦定理、三角形的面积和正弦定理,并做了相关的练习,可以熟练地应用这些公式和定理解决具体问题.本节课主要通过应用举例与数学知识的应用,进一步强化学生分析问题和解决问题的能力.

【教学目标】

- (1) 会利用三角计算,解决一些生活中的实际应用问题.
- (2) 通过应用举例与数学知识的应用,强化学生分析问题和解决问题的能力.

【教学重点和难点】

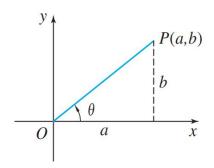
本节课的教学重点和难点是应用三角计算公式、正弦定理、余弦定理等解决生活中的实际问题.

【教学过程】

教学环节	教学内容	设计意图
导入	三角公式在数学的公式推导、日常生活中的测量以及物理的电学等都有应用,下面我们来看几个例子.	提出问题,
		启发思考,引
		出课题.
新课	【 例1 】 求函数 $y=a\sin x+b\cos x$ 的最大值、最小值和周期,	_D, W, 44, FI
	其中 a , b 是不同时为零的实数. 解: 考察以 (a, b) 为坐标的点 $P(a, b)$ (如图),设以 OP 为终边的一个角为 θ ,则 $\cos\theta = \frac{a}{\sqrt{a^2 + b^2}}, \sin\theta = \frac{b}{\sqrt{a^2 + b^2}}.$	求函数的最
		大值、最小值
		和周期,介绍
		辅助角公式的
		主要作用是将
	于是,已知函数可化为	多个三角函数
	$y = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right)$	的和化成单个
		角的三角函
	$= \sqrt{a^2 + b^2} \left(\cos \theta \sin x + \sin \theta \cos x \right)$	数.

$$= \sqrt{a^2 + b^2} \sin(x + \theta).$$

所以,函数 $y=a\sin x+b\cos x$ 的最大值时 $\sqrt{a^2+b^2}$,最小值是 $-\sqrt{a^2+b^2}$,周期为 2π .



【例2】 已知三个电流瞬时值的函数解析式分别是

 I_1 =5sin ωt , I_2 =6sin(ωt -60°), I_3 =10sin(ωt +60°).求它们合成后的电流瞬时值 I= I_1 + I_2 + I_3 的函数解析式(角度精确到 1 分).

M: $I=I_1 + I_2 + I_3 = 5\sin \omega t + 6\sin(\omega t - 60^\circ) + 10\sin(\omega t + 60^\circ)$

=5sin ωt +6 (sin ωt cos 60°-cos ωt sin 60°)

 $+10(\sin \omega t \cos 60^{\circ} + \cos \omega t \sin 60^{\circ})$

 $=5\sin \omega t + 8\sin \omega t + 2\sqrt{3}\cos \omega t$

=13sin $\omega t + 2\sqrt{3}\cos \omega t$

$$= \sqrt{13^2 + (2\sqrt{3})^2} \sin(\omega t + \theta)$$

 $=\sqrt{181}\sin(\omega t + \theta),$

其中 θ 满足 $\cos\theta = \frac{13}{181}$, $\sin\theta = \frac{2\sqrt{3}}{181}$,用函数型计算器计算可

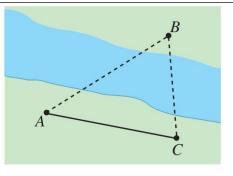
得θ≈14°55′.

所以 $I=\sqrt{181}\sin(\omega t+14^{\circ}55')$.

例 2 说明几个振幅和初相不同,但频率相同的正弦波之和, 总是等于另一个具有相同频率的正弦波.

【**例** 3】如图所示,设 A,B 两点在河的两岸,测量者在与 A 同侧的河岸边选取测点 C,测得 AC 的距离是 50 m, $\angle BAC=51^{\circ}$, $\angle ACB=75^{\circ}$,求 A,B 两点间的距离(精确到 0.1m).

引出测量距 离问题,指导 学生解决这类 问题要先将已



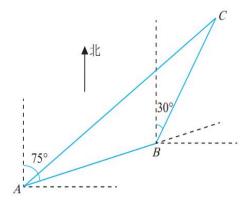
知条件归结到 三角形中,然 后根据已知条 件计算所求数 值.

解: ∠ABC=180°-∠BAC-∠ACB=54°,

由正弦定理可得 $\frac{AC}{\sin\angle ABC} = \frac{AB}{\sin\angle ACB}$

所以
$$AB = \frac{AC\sin\angle ACB}{\sin\angle ABC} = \frac{50\sin75^{\circ}}{\sin54^{\circ}} \approx 59.7 \text{(m)}.$$

【例 4】如图所示,一艘货轮从 A 地出发,沿北偏东 75°的 方向航行 105 n mile 后到达海岛 B,再沿北偏东 30°的方向航行 88 n mile 后到达海岛 C. 如果该货轮从 A 地出发直接到达海岛 C,应沿什么方向航行,需要航行的距离是多少(结果保留一位小数)?



综合应用余 弦定理和正弦 定理,强化学 生用定理解决 生活中实际问 题的能力.

解: 在 \triangle *ABC*中, \angle *ABC* = 180° - (75° - 30°) = 135°. 由余弦定理,得

$$AC = \sqrt{AB^2 + BC^2 - 2 \times AB \times BC \times \cos \angle ABC}$$
$$= \sqrt{105^2 + 88^2 - 2 \times 105 \times 88 \times \cos 135^{\circ}}$$
$$\approx 178.4 \text{ (n mile)}.$$

由正弦定理,得 $\frac{AC}{\sin \angle ABC} = \frac{BC}{\sin \angle CAB}$,即

$$\sin\angle CAB = \frac{BC \times \sin\angle ABC}{AC} \approx \frac{88 \times \sin 135^{\circ}}{178.4} \approx 0.35$$

所以 $\angle CAB \approx 20.5$ °或 $\angle CAB \approx 159.5$ °(含去),

而	ī 75°	-20.5°	$=54.5^{\circ}$	

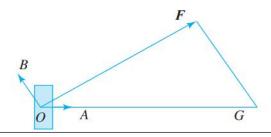
因此,如果该货轮从 A 地出发直接到达海岛 C,应沿北偏东 54.5°的方向大约航行 178.4 n mile.

【习题】

1. 已知三个电流瞬时值的函数解析式分别是

 $I_1 = 8 \sin \omega t$, $I_2 = 12 \sin (\omega t - 45^\circ)$, $I_3 = 10 \sin (\omega t + 30^\circ)$. 求合成的正弦波 $I = I_1 + I_2 + I_3$ 的函数解析式.

- 2. 电流I随时间 t 变化的函数关系是 $I=I_m\sin \omega t$,设 $\omega=100$ π rad/s, $I_m=5$ A:
 - (1) 求电流/随时间变化的周期与频率;
 - (2) 当t=0, $\frac{1}{200}$, $\frac{1}{100}$, $\frac{3}{200}$, $\frac{1}{50}$ s 时,求电流I.
- 3. 一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位: cm)和时间t(单位: s)的函数关系是 $s=3\sin(\sqrt{\frac{g}{l}}t+\frac{\pi}{3})$.
 - (1) 求小球摆动的周期;
- (2) 已知 $g = 980 \text{ cm/s}^2$,要使小球摆动的周期是 1 s,则 线的长度是多少(精确到 0.1 cm, π 取 3.14)?
- 4. 如下图所示,对某物体施加一个大小为 5 N 的力 F,这个力被分解到 OA,OB 两个方向上. 已知 $\angle AOB = 120^{\circ}$,力 F 与 OA 的夹角为 25° ,求分力的大小(精确到 0.01 N).



巩固 练习

