1.2 倍角公式 (第1课时)

【学情分析】

学生在前面学习了两角和与差的正、余弦及正切公式,因此可以对学生的知识体系进行顺应性的建构,引导学生思考当两个角相同时,公式是什么,有哪些变化.从学科核心素养来看,学生具备一定的直观想象、逻辑推理、数学抽象素养.由于学生基础较为薄弱,教学时需注意低起点、慢慢来、多示范、多练习,逐步提升学生的逻辑推理能力.

【教学目标】

- (1) 掌握二倍角的正弦、余弦、正切公式.
- (2) 应用上述公式进行简单的三角函数式的求值、化简.
- (3) 体会化归思想的作用.

【教学重点和难点】

本节课的教学重点是理解"二倍"的实质并会简单应用,教学难点是二倍角公式的推导、二倍角余弦的两种变形公式及应用.

【教学过程】

教学环节	教学内容	设计意图
复习	我们已经学习了两角和与差的余弦、正弦、正切公式,现在请一	
	位同学们回答一下和角公式的内容.	
	$\cos(\alpha + \beta) =$	回顾之
		前学过的
	$\sin(\alpha + \beta) =$	公式,为
	$\sin \alpha \cos \beta + \cos \alpha \sin \beta$	本节课的
	,	学习做铺
	$\tan(\alpha + \beta) = \underline{\hspace{1cm}}$	垫.
	计算三角函数值时,有些时候只用加或减不能满足要求. 对于角	
	lpha,我们要求它的二倍角($2lpha$)的三角函数值,该如何求呢?今	
	天我们就来学习二倍角的相关公式.	

【问题】在上面的和角公式中,若令 $\beta=\alpha$,会得到怎样的结果

呢?

$$\sin 2\alpha = \sin(\alpha + \alpha) = \sin \alpha \cos \alpha + \cos \alpha \sin \alpha$$
$$= 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos(\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$$
$$= \cos^2 \alpha - \sin^2 \alpha$$

$$\tan 2\alpha = \tan(\alpha + \alpha) = \frac{\tan \alpha + \tan \alpha}{1 - \tan \alpha \tan \alpha}$$
$$= \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

整理,得

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
, $(S_{2\alpha})$
 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
 $= 2\cos^2 \alpha - 1$
 $= 1 - 2\sin^2 \alpha$, $(C_{2\alpha})$
 $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$. $(T_{2\alpha})$

新课

【思考】(1) 公式中 α 有限制条件吗?

(2) 公式的顺用和逆用.

解 因为 $\sin \alpha = \frac{5}{13}$, $\alpha \in (\frac{\pi}{2}, \pi)$, 所以

例1 已知 $\sin \alpha = \frac{5}{13}$, $\alpha \in (\frac{\pi}{2}, \pi)$, 求 $\sin 2\alpha$, $\cos 2\alpha$, $\tan 2\alpha$ 的值.

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\sqrt{1 - \left(\frac{5}{13}\right)^2} = -\frac{12}{13},$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha = 2 \times \frac{5}{13} \times \left(-\frac{12}{13}\right) = -\frac{120}{169},$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \left(-\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2 = \frac{119}{169},$$

$$\tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = -\frac{120}{169} \div \frac{119}{169} = -\frac{120}{119}.$$

教演的程生们联师示推,理之系

有了前 面的复习 铺垫,通 过问题引 导和实例 应用, 使 学生能够 利用两角 和的三角 函数公式 推导倍角 公式,理 解倍角公 式就是两 角和的三 角函数公 式 的 特 例.

教思书学解的整师路演生决方理点,示思问法、

范自己的

		解 题 过
	练习	程.
	1. 求下列各式的精确值:	要求学
	(1) $2\sin 67^{\circ}30'\cos 67^{\circ}30';$ (2) $\cos^2\frac{\pi}{8}-\sin^2\frac{\pi}{8};$	生自己动
	(3) $2\cos^2\frac{\pi}{12}-1$; (4) $1-2\sin^275^\circ$.	手,把解
	2. 已知 sin α=0.8, 且 α∈(0, π), 求 cos 2α, sin 2α 的值.	决问题的
		主动权交
		给学生,
		充分显示
		学生的主
		体地位.
小结	引导学生小结. $(1) 二倍角公式是和角公式的特例. \\ \sin 2\alpha = \sin(\alpha + \alpha) = \sin \alpha \cos \alpha + \cos \alpha \sin \alpha \\ = 2\sin \alpha \cos \alpha. \\ \cos 2\alpha = \cos(\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha \\ = \cos^2 \alpha - \sin^2 \alpha. \\ \tan 2\alpha = \tan(\alpha + \alpha) = \frac{\tan \alpha + \tan \alpha}{1 - \tan \alpha \tan \alpha} \\ = \frac{2\tan \alpha}{1 - \tan^2 \alpha}. \\ (2) 二倍角公式与和角、差角公式一样,反映的都是如何用单角的三角函数值表示复角(和、差、倍)的三角函数值. 结合前面学习的同角三角函数关系式和诱导公式可以解决三角函数中的相关问题.$	习程本收额 总课学过结的