1.1.2 两角和与差的正弦公式(第2课时)

【学情分析】

学生在初中初步学习了三角函数,前面的课程又进一步学习了三角函数的相关知识,因此可以对学生的知识体系进行顺应性的建构,由两角和与差的余弦公式和诱导公式推导出两角和与差的正弦公式.从学科核心素养来看,学生具备一定的直观想象、逻辑推理和数学抽象素养.由于三角函数是学生的薄弱环节,教学时需注意低起点、慢慢来、多示范、多练习,逐步提升学生的逻辑推理能力.

【教学目标】

- (1)通过对两角和与差的正弦公式的推导,揭示两角和、差的三角函数与这两角的三角函数之间的运算规律.
- (2) 加深学生对数学公式推导、证明方法的理解,培养学生的运算能力和逻辑推理能力.
 - (3) 培养学生的探索精神,提高学生发现问题和解决问题的能力.

【教学重点和难点】

本节课的教学重点是两角和与差的正弦公式及其应用,教学难点是灵活应用所学公式进行化简、证明.

【教学过程】

教学环节	教学内容	设计意图
复习	复习上节课所学的两角和与差的正弦公式: $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta \ (S_{\alpha+\beta})$ $\sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta \ (S_{\alpha-\beta})$	回忆两角和 与差的正弦公 式.

【公式巩固】

例2 己知
$$\cos \beta = -\frac{4}{5}$$
, $\beta \in (\pi, \frac{3\pi}{2})$, 求 $\sin(\beta + \frac{\pi}{3})$, $\sin(\frac{\pi}{4} - \beta)$ 的值.

【问题】同学们是否记得同角三角函数的基本关系式?回顾这两组公式.

解: 因为
$$\cos\beta = -\frac{4}{5}$$
, $\beta \in (\pi, \frac{3\pi}{2})$, 所以

$$\sin\beta = -\sqrt{1-\cos^2\beta} = -\sqrt{1-(-\frac{4}{5})^2} = -\frac{3}{5}.$$

$$\sin(\beta + \frac{\pi}{3}) = \sin\beta\cos\frac{\pi}{3} + \cos\beta\sin\frac{\pi}{3}$$

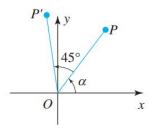
$$=(-\frac{3}{5})\times\frac{1}{2}-\frac{4}{5}\times\frac{\sqrt{3}}{2}=-\frac{3+4\sqrt{3}}{10}.$$

$$\sin(\frac{\pi}{4} - \beta) = \sin\frac{\pi}{4}\cos\beta - \cos\frac{\pi}{4}\sin\beta$$

$$=\frac{\sqrt{2}}{2}\times(-\frac{4}{5})-\frac{\sqrt{2}}{2}\times(-\frac{3}{5})=-\frac{\sqrt{2}}{10}.$$

新课

练习2 化简:


(1)sin
$$(\alpha + \beta) \cos \alpha - \cos (\alpha + \beta) \sin \alpha$$
;

(2)sin
$$(\alpha - \beta) \cos \beta + \cos (\alpha - \beta) \sin \beta$$
.

【公式巩固】

例3 如下图,

已知点 P(3, 4),将点 P 与原点的距离保持不变,并绕原点旋转 45° 到P 的位置,求点P 的坐标 $\left(x', y'\right)$.

解: 设
$$\angle xOP = \alpha$$
, 因为 $|OP| = \sqrt{3^2 + 4^2} = 5$,

应用公式求 值,结合同角 三角函数基本 关系式等知识,培养学生的探索精神.

应用数学知识,结合任意 角的三角函数 求解,培养学 生的发散思维 能力.

	所以 $\cos \alpha = \frac{3}{5}$, $\sin \alpha = \frac{4}{5}$.	
	$x' = 5\cos(\alpha + 45^\circ) = 5(\cos\alpha\cos 45^\circ - \sin\alpha\sin 45^\circ)$	
	$= 5 \times (\frac{3}{5} \times \frac{\sqrt{2}}{2} - \frac{4}{5} \times \frac{\sqrt{2}}{2}) = -\frac{\sqrt{2}}{2} ;$	
	$y' = 5\sin(\alpha + 45^\circ) = 5(\sin\alpha\cos 45^\circ + \cos\alpha\sin 45^\circ)$	
	$= 5 \times (\frac{4}{5} \times \frac{\sqrt{2}}{2} + \frac{3}{5} \times \frac{\sqrt{2}}{2}) = \frac{7\sqrt{2}}{2}.$	
	所以P'的坐标为 $\left(-\frac{\sqrt{2}}{2}, \frac{7\sqrt{2}}{2}\right)$.	
作业	必做题 教材第8页, 习题第3,4题. 选做题 教材第8页, 习题第5题.	巩固新知.
小结	引导学生小结. (1)本节课我们学习了两角和与差的正弦公式,熟记这两个公式. (2)在解题过程中要善于发现规律,学会灵活应用.	回顾学习的 过程,总结本 节课的收获.