5.2.1 任意角三角函数的定义

【教学目标】

- 1. 理解并掌握任意角三角函数的定义,会根据三角函数的定义求特殊角的三角函数,熟记三角函数在各象限的符号,掌握三角函数线的定义及画法.
- 2. 进一步体会数形结合的思想,提升直观想象、逻辑推理和数学抽象的核心素养.

【教学重点】

任意角三角函数的定义.

【教学难点】

单位圆及三角函数线.

【教学方法】

本节课主要采用启发引导与讲练结合式的教学方法. 在复习锐角三角函数 定义的基础上,定义任意角的三角函数,然后引导学生根据三角函数的定义求 特殊角的三角函数. 接着,根据象限内点的坐标符号和三角函数的定义导出三角函数在各象限的符号,接着把正弦值、余弦值、正切值用单位圆中的有向线 段表示,使数与形密切结合起来,加强学生对三角函数定义的理解.

【教学过程】

教学	教学内容	师生互动	设计意图
环节	32,11,1	7. == 3	377,3.1
		教师提出:初中时我们学	
导	复习锐角三角函数的定义.	过锐角三角函数, 当时是怎	复习旧知,
入	及勺玩用用函数的定义,	样定义的?	引入新知.
		学生小组讨论后回答.	
	1. 任意角三角函数的定义	教师提问: 当我们把锐角	
新	已知 α 是任意角, $P(x, y)$,	的概念推广为转角后, 我们	
	$P'(x', y')$ 是角 α 的终边与两个半	如何定义任意角的三角函数?	
课	径不同的同心圆的交点,如图1所	教师引导学生理解:	
	示. 其中 $r = \sqrt{x^2 + y^2}$, $r' =$	如图 1 所示,由相似三角	

教学	教学内容	师生互动	设计意图
环节	教子 門 日	W T T W	及月志国
新课	$\sqrt{x'^2+y'^2}$. y Q X' X Y	形对应边成比例得, $\frac{ x }{r} = \frac{ x' }{r'}$, $\frac{ y }{r} = \frac{ y' }{r'}$, $\frac{ y }{ x } = \frac{ y' }{ x' }$. 由于点 P , P' 在同一象限内,所以它们的坐标符号相同,因此, $\frac{x}{r} = \frac{x'}{r'}$, $\frac{y}{r} = \frac{y'}{r'}$,所以三个比值 $\frac{x}{r}$, $\frac{y}{r}$,从实内依赖于 α 的大小,与点 P 在 α 终边上的位置无关.	说明三角 函数定义的 理论根据.
	r $\label{eq:controller}$	教师引领学生识记三角函数的定义. 教师依据函数定义说明角α与三角函数值的对应关系.	引出任意角三角函数的概念.

	教学			
例 1 已知角 α 的终边经过点 $P(2)$, 数师提示学生根据三角函为的定义。 对 α 和 $\tan \alpha$ 数的定义,求三角函数值。 函数的定义。	环节	人 教学内容	师生互动 	设计意图
正切.	环节	-3). 求 $\sin \alpha$, $\cos \alpha$ 和 $\tan \alpha$. 解 设 $x = 2$, $y = -3$, 则 $r = \sqrt{x^2 + y^2} = \sqrt{2^2 + (-3)^2} = \sqrt{13}$. 于是 $\sin \alpha = \frac{y}{r} = \frac{-3}{\sqrt{13}} = -\frac{3\sqrt{13}}{13}$, $\cos \alpha = \frac{x}{r} = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13}$, $\tan \alpha = \frac{y}{x} = -\frac{3}{2}$. 例 2 求下列各角的正弦、余弦和正切. (1) 0; (2) π ; (3) $\frac{3\pi}{2}$. 解 (1) 角 0 的终边在 x 轴正半	数的定义,求三角函数值. 教师提问:如果没有给出 角的终边经过的点的坐标, 如何求出一些特殊角的三角 函数值呢?	函数的定义. 展示 如何 函数的定义的特殊的三
课 早年讨论,尝试水解例 2. 用函数值. 常址上,在 x 轴的正半轴上取点(1,	课	轴上,在 x 轴的正半轴上取点 (1,0),所以 $r=\sqrt{1^2+0^2}=1$,因此 $\sin 0 = \frac{0}{1} = 0, \cos 0 = \frac{1}{1} = 1,$	学生讨论,尝试求解例 2.	角函数值.
$\sin 0 = \frac{0}{1} = 0$, $\cos 0 = \frac{1}{1} = 1$,		在 x 轴的负半轴上取点 $(-1, 0)$, 所以 $r = \sqrt{(-1)^2 + 0^2} = 1$, 因此 $\sin \pi = \frac{0}{1} = 0$, $\cos \pi = \frac{-1}{1} = -1$,		

教学	教学内容	师生互动	设计意图
环节	数子内讧	がモュめ	及り思国
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	教师提出:从定义与实例 都可以看出,任意角的正弦、 余弦与正切,都既有可能是 正数,也有可能是负数,还 可能为 0. 它们的符号与什么 有关? 试总结出任意角的正 弦、余弦与正切符号的规律. 学生分析正弦、余弦与正 切在各象限的符号.	引导学生 总结出正 弦、余弦与 正切在各象 限的符号规 律.
新课	例 4 确定下列各值的符号: (1) $\cos 260^\circ$; (2) $\sin\left(-\frac{\pi}{3}\right)$; (3) $\tan(-672^\circ20')$; (4) $\tan\frac{10\pi}{3}$. 解 (1) 因为 260° 是第三象限角,所以 $\cos 260^\circ < 0$; (2) 因为 $-\frac{\pi}{3}$ 是第四象限角,所以 $\sin\left(-\frac{\pi}{3}\right) < 0$; (3) 由 $-672^\circ20' = 47^\circ40' + (-2) \times 360^\circ$,可知 $-672^\circ20'$ 是第一象限角,所以 $\tan(-672^\circ20') > 0$; (4) 由 $\frac{10\pi}{3} = \frac{4\pi}{3} + 2\pi$,可知 $\frac{10\pi}{3}$ 是	教师指出:在确定某一三 角函数值的符号时,可以先 判断对应的角是第几象限角, 再根据正弦、余弦与正切在 各象限的符号规律进行判断.	巩固学生 对正弦、余 弦与 限 移 。 的理解.

教学		师生互动	设计意图
环节			
	第三象限角,所以 $\tan \frac{10\pi}{3} > 0$.		
	例 5 设 $\sin \theta < 0$ 且 $\tan \theta > 0$,确	学生小组讨论,得出结果,	提升学生
	定 θ 是第几象限角.	教师给予点评,并强调 $\sin \theta <$	逻辑推理的
	解 因为 sin θ <0, 所以 θ 的终边	0 时,不要忘记 θ 的终边可	核心素养.
	在第三、四象限,或y轴负半轴上;	能落在 y 轴负半轴上.	
	又因为 $\tan \theta > 0$, 所以 θ 的终边在第		
	一、三象限.		
	因此满足 $\sin \theta < 0$ 且 $\tan \theta > 0$ 的 θ		
	是第三象限角.		
	练习 确定下列三角函数值的符号:	学生完成练习后, 教师可	
	(1) $\sin\left(-\frac{\pi}{4}\right)$; (2) $\cos 130^{\circ}$;	让学生用计算器验证各三角	
		函数值的符号.	
新	(3) $\tan \frac{4\pi}{3}$.		
课	3. 单位圆与三角函数线		
	一般地, 在平面直角坐标系中, 坐	教师指出,结合单位圆和	引导学生
	标满足 $x^2 + y^2 = 1$ 的点组成的集合	三角函数的定义, 可以得到	体会知识之
	称为单位圆. 因此, 如果角 α 的终边	角的余弦和正弦的新求法.	间的联系.
	与单位圆的交点为 P ,由三角函数的		
	定义可知, 点 P 的坐标为		
	$(\cos \alpha, \sin \alpha).$		
	这就是说, 角 α 的余弦和正弦分别		
	等于角α终边与单位圆交点的横坐标		
	和纵坐标.		
	如图 4 所示,习惯上,我们称有向	教师指出,利用正弦线和	引导学生
	线段 OM 为角α的余弦线, 称有向	余弦线可以直观地看出角的	感受三角函
	线段 MP 为角 α 的正弦线.	正弦和余弦的信息.	数线的直观
			性及作用.

教学	数	压 化 下 动	近江辛 園
环节	教学内容	师生互动 	设计意图
	β 的终边 β 的终边 δ	教师提问:角 β 的余弦线是 ON ,正弦线是 NS .你能得出哪些信息?学生回答: $\cos \beta < 0$, $\sin \beta < 0$,且 $ \cos \beta > \cos \alpha $, $ \sin \alpha > \sin \beta $.	
	如图 5 所示,设角α的终边与直线	教师提问:角β的正切线	
	x=1 交于点 T ,则有向线段 AT 可	是AS, 你能得出哪些信息?	
	以直观地表示 tan α, 因此 AT 称为	学生回答: tan β<0, 且	
	角α的正切线.	$ \tan eta < \tan lpha $.	
新课	β 的 y α 的 终边 A A O 1 x S		
	图 5		
	正弦线、余弦线和正切线都称为三 角函数线.		
	例 6 作出 $\frac{5\pi}{6}$ 和 $\frac{\pi}{4}$ 的正弦线、余弦	学生分析、解决问题. 教	引导学生
	线和正切线,并利用三角函数线求出	师对个别学生进行指导.	体会三角函
	它们的正弦、余弦和正切.		数线的应用.
	解 如图 6 所示,在平面直角坐标		
	系中作出单位圆以及直线 $x=1$, 单		
	位圆与 x 轴交于点 A(1,0).		

教学		师生互动	设计意图
环节	教子內 苷	加 王 <u>刘</u>	以月忌因
	$ \begin{array}{c c} 5\pi \\ \hline 6 \\ \hline M \\ O \\ \hline N \\ T \end{array} $ $ \begin{array}{c} \pi \\ 4 \\ A \\ X \\ T \end{array} $		
	作 $\frac{5\pi}{6}$ 的终边与单位圆的交点 P ,	教师引导学生根据三角函	巩固三角
	过 P 作 x 轴的垂线,垂足为 M ;延长线段 PO ,交直线 $x=1$ 于 T ,则	数线的定义作出 $\frac{5\pi}{6}$ 的正弦线、余弦线和正切线.	函数线的定义及应用.
	$\frac{5\pi}{6}$ 的正弦线为 MP ,余弦线为 OM ,		
	正切线为 AT.		
新	类似可得到 $\frac{\pi}{4}$ 的正弦线为 NR ,余	学生独立作出 $\frac{\pi}{4}$ 的正弦线、	为学生提
课	弦线为 ON,正切线为 AS.	余弦线和正切线, 教师检查	供巩固三角 函数线作图
	在图 6 中,根据直角三角形的知识可知,	学生的完成情况.	的机会.
	$ MP = \frac{1}{2}, OM = \frac{\sqrt{3}}{2}, AT =$		
	$\frac{\sqrt{3}}{3}$, $ ON = NR = \frac{\sqrt{2}}{2}$, $ AS = 1$,		
	所以		
	$\sin\frac{5\pi}{6} = \frac{1}{2}, \cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2},$	教师强调根据三角函数线 得出三角函数值时,要注意	引导学生 体会三角函
	$\tan \frac{5\pi}{6} = -\frac{\sqrt{3}}{3};$	三角函数值的符号.	数线的作用.
	$\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\tan\frac{\pi}{4} = 1$.		

教学 环节	教学内容	师生互动	设计意图
小结	回忆本节课所学知识点: 1. 任意角三角函数的定义. 2. 正弦、余弦与正切在各象限的符号. 3. 单位圆与三角函数线.	教师引导学生总结本节所 学知识,反思易错点.	帮助学生养成良好的学习习惯.
作业	本节练习 A 组第 1~3 题, 练习 B 组第 2~3 题.	教师布置作业,学生课下 完成.	巩固所学知识.